LONGEVITY IN THE 21st CENTURY: THE TUG OF THE PAST

Alberto Palloni

Center for Demography of Health and Aging University of Wisconsin – Madison

October 22nd, 2013

Potential value of this work(?)

 Importance of cohort compositional changes by health related traits or attributes as a platform to:

inform projections and forecasts

 understand nature of future trends even if we are unable to forecast them correctly

Cohort and Period Changes: I

Object: changing composition of cohorts according to well-defined traits/attributes known to be linked to health and mortality to specify future trends

Conditions:

- Know how cohorts evolve under selection pressure due to the trait;
- Know the linkage between the traits and health and mortality;

Cohort and Period Changes: II

- Period changes (not linked to cohorts; affecting all cohorts the same way) may also be important (emergence of new diseases; climate changes etc...)
- Period changes/shocks may alter both the changing composition of cohort by traits (selection) and the linkage between traits/attributes and health/mortality risk ...medical technology

Three cohort shifts in LAC

 Adult cohorts are changing relative to their past exposure to early conditions

 Adult cohorts are changing relative to prevalence of smoking (uptake/desistance)

 Adult cohorts changd relative to prevalence of obesity (early/adult/trajectories)

Punch line

□ All three shifts imply:

- Changes in health status associated with chronic conditions (CVD, cancer, DT2, COPD)
- Changes in mortality that oppose resistance to improvements in longevity
- Changes in demand for health infrastructure, service and and expenditures (DT2)

Identification of trait and assessment of composition of cohort by trait: past, present and near term

Rate of acquisition of and resistance to traitsforce of selection due to traits

 Identification of linkage between traits and excess health/mortality risks

Changing composition by past exposure to smoking

- Past smoking and stages in the smoking epidemic:
 - Early and late stages
 - Male-female contrasts
 - Special cases Brazil, Cuba and Chile
- Selection: before age 50 is negligible
- Linkage to mortality: via lung cancer
 - Age of onset; duration; intensity

Four Stages of the Tobacco Epidemic

A model of the cigarette epidemic

The Americas: Stages of the Tobacco Epidemic

Changing composition by obesity

- Increasing obesity throughout
 - Early and late stages
 - Male-female contrasts
 - Special cases: Mexico
- Selection: before age 50 is minor
- Linkage to mortality: via DT2, CVD, cancer, cognitive decline
 - Age of onset; duration; trajectories

Figure 4: Relations between obesity, diseases and mortality

The case of Mexico

Ten year risk of developing DT2 given obesity at the outset

Risk of DT2 (cancer; heart) given DT2

Overall mortality excess due to obesity

Recent estimates

INTERMEDIATE RISKS

- Risk of DT2 given obesity
 - 1.44-1.56 obese
 - 1.36-1.42 overweight
- Risk of mortality given DT2
 - **1.70**

OVERALL IMPACT ON MORTALITY AT AGES OVER 50

Losses between 3 and 4 years of life at age 50

■ About 9-14% of E(50)

Changing composition by early exposures

 Trait: Type/extent of exposure to early diseases and poor nutrition

- Strong and weak conditions
 - Depend on regime of mortality decline
- Selection before 50: substantial
- Linkage to mortality: via DT2, CVD, COPD, some cancers (liver; gastrointestinal)
 - Age of onset; duration; trajectories

Types of frailty

Standard: established at birth, invariant and invariant effects on mortality. If you believe in this you can also to believe in:

 Barker: established in the age interval (-1,5), invariant but with time varying effects

• Effects on mortality before age 5 and on mortality above age 60

Figure 2a: Life expectancy at age 60 under different scenarios..... Argentina 20 19 18 17 2020 2010 2030 2040 2050 Year E(60) with interm. relative risks E(60) with low relative risks E(60) with high relative risks

CONCLUSIONS

- Strength of estimates is variable
 - Stronger for smoking and obesity
 - Weaker for early conditions
- Estimates are absurdly conservative
- Ignore interactions between traits
 - Excess mortality due to smoking AND obesity
- Assumes no changes in medical technology
 - What if new lung cancer therapy that leads to final remission?
- Need to generate similar estimates for other regions
 - Other countries may be worse than obesity in Mexico or smoking in Cuba

Early Conditions

Nutritional Status

> Barker and Osmond 1986 Barker et al 1989a, 1989b, 1989c Barker 1994, 1998 Fowden and Forhead 2004 Gluckman and Hanson 2006 Godfrey et al 2007 Palloni and McEniry 2007 Kaijser et al 2008

Heart and Pulmonary Diseases Diabetes

Early Conditions

Recurrent Infections

Fong 2000, 2004, 2005 <periodontitis/chlamidya pneumonia>

Finch and Crimmins 2004 Crimmins and Finch 2006 McDade et al 2010

Mortality regimes and Barker effects

Mortality Decline	Early-late health connection		
	Nutritional Status	Diseases	Recurrent Infections
Standards of living	(++)	(+)	(+)
Public Health	(+)	(++)	(++)
Medical Innovations	(?)	(?)	(?)

Within Cohort Relation between Early and Late Mortality: Western Europe and North America

Mortality Decline	Early-late health connection		
	Nutritional Status	Particular diseases	Recurrent Infections
Standards of living	(++)	(+)	(+)
Public Health	(+)	(++)	(++)
	(?)	(?)	(?)

Mortality Decline	Early-late health connection		
	Nutritional Status	Particular diseases	Recurrent Infections
Standards of living	(++)	(+)	(+)
Public Health	(+)	(+)	(+)
Medical Innovations	(?)	(?)	(?)

The scenario in LAC countries

Medical improvements after 1940

Explain 40% to 60% of decline in mortality rates in LAC (Palloni and Wyrick 1981; Palloni and Pinto, 2011)

Pater Barry Court Street

Mortality Decline	Type of early-late health connection		
	Nutritional Status	Particular diseases	Recurrent Infections
	(++)	(+)	(+)
	(+)	(+)	(+)
Medical Innovations	(?)	(?)	(?)

Mortality Decline	Type of early-late health connection		
	Nutritional Status	Particular diseases	Recurrent Infections
	It dépènds o	on whéther me	dical innovation
	decreases co (+)	ontraction rate (+)	s (vaccination) (+)
Medical Innovations	(+)	(+)	(+)

Mortality Decline	Type of early-late health connection		
	Nutritional Status	Particular diseases	Recurrent Infections
	o(+in)creas	es recovery ra	tes (antibiotics;
	(+)	(+)	(+)
Medical Innovations	(-)	(-)	(-)

Mortality Decline	Type of early-late health connection		
	Nutritional Status	Particular diseases	Recurrent Infections
	Scenarios n	nost likely in (+)	LAC countries
Public Health	(+)	(+)	(+)
Medical Innovations	0	(-)	(-)

QUICK EXAMPLES

- Chemotherapy (antibiotics) enhances expression
 - Rheumatic heart fever and late adult valve disease (stenosis)
 - Helicobaterium
 Pylori and colon
 cancer
 - Chagas disease
 - Hepatitis A

 Public health (eradicat) reduces exposure to :

- Malaria
- Helic.Bacter.Pyl
- Chagas
- HPV
CONJECTURE

 Cohorts born after 1940-50 and carry with them higher odds of expressing effects of early conditions or "Barker effects": their survival was the work of medical innovations and less so of public health and improvements in nutrition

- Increased chronic illness (metabolic; heart;respir)
- Increased mortality
- Increased disability

"Increased"...relative to a counterfactual: what they would have experienced had they not been saved by medical technology and instead had survived due other factors

Difficulties

Counterfactual is unverifiable and we must be satisfied with irregularities in time trajectory of mortality rates

 Offsetting effects of progress in prevention treatment of chronic conditions

The standard frailty model

Frailty φ with density g(φ) and time- invariant impact on force of mortality:
 μ(x)=μ_s(x) * φ

• Time dependent composition by ϕ

Continuous changes in mean μ(x):
 μ(x)=μ_s(x) * E(φ, x)

• Convergence of $\mu(x)$ to least frail

Barker effects-new formulation

- Early conditions in age interval(-1.0-5.0) with a fixed distribution, $f(\varepsilon)$
- $\varepsilon influences \mu(x) \text{ for ages } x < y \text{ as}$ $\circ \mu(x,\varepsilon) = \varepsilon \mu_s(x)$
- ε influences $\mu(x)$ for ages x > 60 as • $\mu(x,\varepsilon) = \lambda^* \varepsilon \mu_s(x)$ and $\lambda > 1$
- Experience of early environments (public health, medical innovations) changes cohort's distribution/composition:
 - it increases representation of high values of ε

 We are assuming one source of heterogeneity, namely, early conditions or ε

• Like the standard heterogeneity models we assume fixed values initial conditions (ϵ or ϕ).

 Unlike standard heterogeneity we are assuming time varying effects

 More interesting is to assume TWO sources of heterogeneity: standard and Barker possibly correlated. This requires working with bivariate distributions

Expression for $\mu_c(y,t)$, y > = 60

 $\mu_{c}(y, t) = \int f(\varepsilon) \ \mu_{s}(y, \varepsilon) \ \varepsilon \ k(t) \ exp[-k(t)^{*} \Lambda_{s}(y, \varepsilon, \lambda)] d\varepsilon / \int f(\varepsilon) \ exp[-k(t)^{*} \Lambda_{s}(y, \varepsilon, \lambda)] \ d\varepsilon$

Expression for integrated MU (net of time effects)

 $\Lambda_{s}(y, \varepsilon, \lambda) = \int_{\{0,60\}} \mu_{s}(y) \lambda \varepsilon d\varepsilon + \int_{\{0,60\}} \mu_{s}(y) \varepsilon = \lambda \varepsilon (\Lambda_{s}(0-y) + \Lambda_{s}(0-60) (1-\lambda))$

Implications of conjecture

□ $\partial \ln\mu_c(y, t)/\partial t = \partial \lnk(t)/\partial t + \partial \ln E(\varepsilon, y, t)/\partial t \ge 0$ for some pair (y,t)

…and because

□ $\partial \ln k(t) / \partial t < 0$ and $\partial \ln E(\varepsilon, y, t) / \partial t \ge 0$

…it must be the case that for some t and y:

 $|\partial \ln k(t) / \partial t| \leq \partial \ln E(\varepsilon, y, t) / \partial t$

Special cases

- \square f(ϵ) member of exponential family:
 - Exponential ****worked out***
 Gamma ******almost there***

• If $\lambda = 1$ model becomes standard frailty model

Empirical test is difficult

Implicated cohorts are too young

- Mortality data in most affected countries is faulty:
 - Overstatement of ages at death decreases over time
 - Completeness of death registration improves over time

parameters

Poor early conditions

Early-Late mechanisms

Changing distribution of 'at risk' population by early conditions over life course under changing mortality

Excess mortality at older ages

Cohorts reaching age y > 60 at time t:

Onset of mortality decline=t_o

Cohort reaching age y>60 at time t>t_o+60: $\mu_{c}(y, t) = \int \mu_{s}(y) \varepsilon k(t) f(\varepsilon) exp[-k(t)*\Lambda_{s}(y,\varepsilon,\lambda)] d\varepsilon / \int f(\varepsilon) \varepsilon xp[k(t)*\Lambda_{s}(y,\varepsilon,\lambda)] d\varepsilon$

Onset of mortality decline

Age Y

Figure 1a: Survival functions by early conditons factor (three mortality regimes)

Figure 1b: Distribution at age 60 by early condition factor (three mortality regimes)

Figure 1d: Differences between average and baseline mortality

I wo conditions and two parameters

Poor early conditions

Early-Late mechanisms

Changing distribution of 'at risk' population by early conditions over life course under changing mortality

Excess mortality at older ages

Σ?

Ω?

Estimation of "Population at Risk" (the Σ) Counterfactual populations

Projections assuming mortality since 1950 constant

Computation of differences yields 'saved' population

Ages: 0-5? 0-20? 0-60?

Causes: all? Infectious Diseases?

Subsets of the 'saved' population

By medical technology? By standards of living?

Subsets experiencing adversity early in life

Fraction of LBW

Fraction stunted (ages 0-10)

Figure 2: Components of a cohort exposed to mortality decline in LAC

 λ proportion among those 'saved' attributable to medical technology: .40 and .60 λ ' proportion among those NOT SAVED attributable to medical technology =.20 ϕ fraction among those saved by medical technology that could manifest EC = .10 -.20 exp(β) is the mortality excess due to early conditions.

Ratios of Populations over 60(Counterfactual / Observed) -Argentina

Ratios of Populations over 60(Counterfactual/ Observed) - Mexico

Ratios of Populations over 60 (Counterfactual/ Observed) - Guatemala

Estimation of Excess Mortality Ω

Mexican Health and Aging Study (MHAS):

- MHAS I (2001) and MHAS II (2003)
- Target Population: People over 50 years old

Puerto Rican Elderly: Health Conditions (PREHCO):

- PREHCO I (2002) and PREHCO II (2006)
- Target Population: People over 60 years old

Costa Rican Longitudinal Study of Elderly (CRELES)

•CRELES I (2006) and CRELES II (2009)

• Target Population: People over 60 years old

Figure 4b: Life expectancy at age 60 under alternative scenario Guatemala

Are these differences large/small?

Projected gains in life expectancy at age 60 between 2010 and 2050 of the order of 5 years: potential losses amount to 3/5 of projected gains

 Gains of life expectancy at age 60 during 1980-2000 of the order of 10 years: potential losses amount to 2/5 of past gains

One more thing

Preliminary results using exponential and gamma show really interesting properties

Results from a bivariate exponential (or bivariate gamma!) to treat simultaneously standard and barker frailty are low hanging fruit and delicious

thanks

You are welcome

Variables	MHAS	PREHCO
Death	0.06	0.16
Age	69	72
Sex (female)	0.53	0.60
Poor Early Conditions	0.38	0.37
Short Knee height	0.3	0.3
Polio	0.003	0.004
Rheumatic Fever	0.014	0.023
Tuberculosis	0.007	0.008
Poor general Health	0.11	0.072
Heart Diseases	0.044	0.19
Diabetes	0.17	0.28
0 yrs school.	0.33	0.06
1-5 yrs school.	0.38	0.31
6 yrs school.	0.15	0.08
7+ yrs school.	0.14	0.55
Proxy interview	0.08	0.12
Total Observations (sample)	7,604	5,286

Variables	MHAS	PREHCO
Death	0.06	0.16
Age	69	72
Sex (female)	0.53	0.60
Poor Early Conditions	0.38	0.37
Short Knee height	0.3	0.3
Polio	0.003	0.004
Rheumatic Fever	0.014	0.023
Tuberculosis	0.007	0.008
Poor general Health	0.11	0.072
Heart Diseases	0.044	0.19
Diabetes	0.17	0.28
0 yrs school.	0.33	0.06
1-5 yrs school.	0.38	0.31
6 yrs school.	0.15	0.08
7+ yrs school.	0.14	0.55
Proxy interview	0.08	0.12
Total Observations (sample)	7,604	5,286

	Poor Early ConditionsDiabetesPoor Early ConditionsHeart Diseases
	Diabetes — Mortality Heart Diseases Mortality PEC Mortality (not significant)
Step 3	Projected Prevalence of Poor Early Conditions, Diabetes and Heart diseases 5 years ahead

Poor Early ConditionsDiabetesPoor Early ConditionsHeart Diseases	
Diabetes — Mortality Heart Diseases Mortality PEC Mortality (not significant)	

Bounds of the effects defined by:

1. Changing the Prevalence of elderly people who experienced PEC

2. Changing the Effect of PEC on Diabetes and Heart Diseases

Changes in Prevalence			
Scenario 1			
Scenario 2			
Scenario 3			

Changes in Prevalence			
Scenario 1	$PEC_{t+5} = PEC_t$		
Scenario 2			
Scenario 3			

Changes in Prevalence			
Scenario 1	$PEC_{t+5} = PEC_t$		
Scenario 2	$PEC_{t+5} = (1+r)^5 \times PEC_t$ r = 0.02 per year (estimated from the data)		
Scenario 3			

Changes in Prevalence			
Scenario 1	$PEC_{t+5} = PEC_t$		
Scenario 2	$PEC_{t+5} = (1+r)^5 \times PEC_t$ r = 0.02 per y ear (estimated from the data)		
Scenario 3	$PEC_{t+5} = 0$		

	EFFECT OF PEC ON	
COUNTER-FACTUAL	DIABETES	HEART DISEASES
Case 0		
Case 1		
Case 2		
Case 3		
Case 4		
Case 5		
Case 6		
Case 7		
Case 8		
Case 9		
Case 10		
Case 11		

COUNTED FACTUAL	EFFECT OF PEC ON	
COUNTER-FACTUAL	DIABETES	HEART DISEASES
Case 0	Estimated Effect	Estimated Effect
Case 1		
Case 2		
Case 3		
Case 4		
Case 5		
Case 6		
Case 7		
Case 8		
Case 9		
Case 10		
Case 11		

COUNTED FACTUAL	EFFECT OF PEC ON	
COUNTER-FACTUAL	DIABETES	HEART DISEASES
Case 0	Estimated Effect	Estimated Effect
Case 1 Case 2 Case 3	2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect	Estimated effect Estimated effect Estimated effect
Case 4 Case 5 Case 6 Case 7 Case 8		
Case 9 Case 10 Case 11		

COUNTED FACTUAL	EFFECT OF PEC ON	
CUUNTER-FACTUAL	DIABETES	HEART DISEASES
Case 0	Estimated Effect	Estimated Effect
Case 1 Case 2 Case 3	2 x Estimated Effect4 x Estimated Effect8 x Estimated Effect	Estimated effect Estimated effect Estimated effect
Case 4 Case 5 Case 6 Case 7 Case 8	 2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect 16 x Estimated Effect 	2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect 16 x Estimated Effect
Case 9 Case 10 Case 11		

COUNTER-FACTUAL	EFFECT OF PEC ON		
	DIABETES	HEART DISEASES	
Case 0	Estimated Effect	Estimated Effect	
Case 1 Case 2 Case 3	2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect	Estimated effect Estimated effect Estimated effect	
Case 4 Case 5 Case 6 Case 7 Case 8	 2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect 16 x Estimated Effect 	 2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect 16 x Estimated Effect 	
Case 9 Case 10 Case 11	Estimated effect Estimated effect Estimated effect	2 x Estimated Effect4 x Estimated Effect8 x Estimated Effect	

COUNTER-FACTUAL	EFFECT OF PEC ON		
	DIABETES	HEART DISEASES	
Case 0	Estimated Effect	Estimated Effect	
Case 1 Case 2 Case 3	2 x Estimated Effect4 x Estimated Effect8 x Estimated Effect	Estimated effect Estimated effect Estimated effect	
Case 4 Case 5 Case 6 Case 7 Case 8	 =case 9 2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect 16 x Estimated Effect 	 =case 9 2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect 16 x Estimated Effect 	
Case 9 Case 10 Case 11	Estimated effect Estimated effect Estimated effect	2 x Estimated Effect 4 x Estimated Effect 8 x Estimated Effect	

4. Results

Poor early _____ conditions

Diabetes Heart Diseases

4. Results

Poor early ______

Diabetes Heart Diseases

Mortality

4. Results

Healthy life expectancy at 60

5. Final Remarks

Our estimates of lower and upper bounds for the effects of PEC suggest:

1) Not even large increases in prevalence of PEC could modify substantially trend in longevity and HLE at old ages

 PEC could have more than trivial consequences on longevity and HLE only if its effects on diabetes and heart disease prevalence are implausible large

$\eta(\mathbf{y}) = \int \mu(\mathbf{y}, \varepsilon) f(\varepsilon) \exp(-\mathbf{I}_{\mathbf{s}}(1+g(\varepsilon)))d\varepsilon / \int f(\varepsilon) \exp(-\mathbf{I}_{\mathbf{s}}(1+g(\varepsilon)))d\varepsilon$

Figure 2: Components of a cohort exposed to mortality decline in LAC

 λ proportion among those 'saved' attributable to medical technology: .40 and .60 λ ' proportion among those NOT SAVED attributable to medical technology =.20 ϕ fraction among those saved by medical technology that could manifest EC = .10 -.20 $\exp(\beta)$ is the mortality excess due to early conditions.

Within Cohort Relation between Early and Late Mortality

Mortality Decline	Early-late health connection			
	Nutritional Status	Particular diseases	Recurrent Infections	
Standards of living	(++)	(+)	(+)	
Public Health	(+)	(+)	(++)	
Medical Innovations	(?)	(?)	(?)	

Cohorts reaching age y at time t:

Onset of mortality decline

Age Y